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Abstract

A study of numerical attributes peculiar to an overset grid ap-

proach to unsteady aerodynamics prediction is presented. At-

tention is focused on the effect of spatial error associated with

interpolation of intergrid boundary conditions and temporal

error associated with explicit update of intergrid boundary

points on overall solution accuracy. A set of numerical exper-

iments are used to verify whether, or not, the use of simple

interpolation for intergrid boundary conditions degrades the

formal accuracy of a conventional second-order flow solver,

and to quantify the error associated with explicit updating

of intergrid boundary points. Test conditions correspond to

the transonic regime. The validity of the numerical results

presented here are estal)lished 1)y coml)arison with existing

numerical results of (h)cmnez,te(l accuracy, and by direct com-

parison with experimental results.

INTRODUCTION

Computatiou of unsteady viscous flows for geomet-

rically comi)lex bodies iltvolving relative motioll be-

tween colnI)onent parts rel)resents all iml)ortalit class

of 1)rohlems for which accurate methods of predic-

tion are required. There arc nunlerous al)l)lications

of this type; launch vehicle staging, aircraft store sep-

aration, crew cscai)e mechanisms, and helicopter ro-

tor/body interaction. Present engineering tools arc in-

adequate for risk-free analysis of this (:lass of problems,

and trial-and-error testing has t)ccolne too expensive

and time-consuming. Mature COml)utational methods

such as enq)irically-modifie(l, three-dimensional panel

codes and nonlinear l)otential methods have been ap-

plied to these t>roblems, but have not been completely

successfld. Unsteady viscous flowfiehls involving mov-

ing shocks, vortical wakes, i:derfel'encc effects and body

motion demand the most advanced COml)utational tech-

niques available.

Currently, the only vial)le high-order nletho(l of l)redic -

tion for these prol)lems is the so ('ailed Chimera[i], or

overset grid al)proach. The apl)roach involves the de-

coml)osition of problem geometry into a number of ge-

ometrically siml>le overlapl)ing eolnponent grids. Grid

coml)onents associated with moving bodies move with

the bodies with<)ut stretching or distorting the grid sys-
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tern. The structure of izldividual grid components facil-

itates viscous boundary layer resolution, and the use of

implicit time-integration algorithms which are not held

to the prohil)itively low time-step limits characteristic

of explicit schemes.

It is reasonahle to I)resume that a solution method that

has been verified to accurately predict the flow dynam-

ics for a given application wouM also provide an accu-

rate prediction for a new al)plication , providing that the

new geometry and flow conditions do not vary widely

from those of the verified l)oint of reference. If this were

not the case, there wouM be liO l)oint in using computa-

tional methods of I)rediction, since construction of the

test article, or prototype, wouhl always be needed to

verify the correctness of the prediction. Overset grid

methods have been al)l)lied to a wide variety of problems

and flow regimes. Carefld verification studies have been

carried out for many non-moving body cases [2,3,4,5,6].

However, data sets are usually only complete enough

to verify the correctness of surface pressure predictions,

and verification of moving body problems is practically

impossible except for ideal cases. Accordingly, verifica-

tion of the predictive ability of overset grid methods is

an ongoing process. Of course, this is true of methods

for Computational Fluid Dynamics (CFD) in general.

The ol)jective of the 1)resent work is to explore basic

attributes peculiar to an overset grid approach a_s they

relate to accuracy in l)redicting the unsteady aerody-

namic fields in moving body l)roblems. The formal so-

lution accuracy of the basic Navier-Stokcs solver em-

ployed here[7] will be taken _s a given. Attention is

focused on the effect of spatial error associated with in-

terpolation of intergrid boundary conditions and tem-

poral error associated with exl)licit update of intcrgrid

boundary points on overall solution accuracy.

DISCUSSION

An overset grid discretization of the space about geo-

metrically complex bodies is comprised of a system of

overlal)l)ing body-fitted grids and tol)ologically siml)le

background grids. The body-fitted grids extend a rela-

tively short distance froln b(_(ly surfaces and are overset
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maintain formal solution accuracy. In practical appli-

cations, given a fixed number of grid points, it is not

possible to provide grid resolution of sufficient density

to guarantee that flow features will always be smoothly

represented in the grid. If a conservative interpola-

tion scheme (e.g., see reference [11]) is used at inter-

grid boundaries, the speed and structure of flow h'atures

(i.e., shocks, vortices, etc.) call be maintained through

grid interfaces. However, lacking sufficient grid resolu-

tion, tile accuracy of tile solution cannot be ensured in

any case. Hence, tile issue with dolnain connectivity is

not necessarily one of conservative versus nonconserva-

tive interpolation, I)ut one of grid resolution.

If solution adaption is used to ensure smooth variation

of dependent variables throughout the computational

space of overset grid systems, the resulting solutions

will accurately approximate the governing differential

equations in all respects. This point is demonstrated

in subsequent l)aragraphs of this paper via a set of nu-

merical experiments. The method of solution adaption

suggested here is that of oversetting fine grid compo-

nents where flow gradients/error indicators are high, as

opposed to resorting to point redistrilmtion methods.

Steady Transonic Airfoil E_camples

Consider the steady flow ow, r a NACA" 0012 airfoil

at Mach 0.8 fi'eestream conditions and 1.25 ° angle-of-

attack. These conditions result in a strong shock on

the airfoil upper surface, and a very weak shock on the

lower surface (see Figure 2). This flow situation has

been used as a benchmark test condition for an AGARD

advisory report on inviscid flow field methods[12]. Ill

order to use the AGARD results as a point of refer-

ence for tile present (lis('ussioll, inviscid conditions have

been iml)osed here also. This siml)lification in no way

dinlilfishes this case as a test of the effect of intergrid

interpolation on solutioll accuracy.

The approach here is to carry out a grid refinement

study and observe the rate at which the numerical er-

ror tends to zero. The error shouhl de('ay at a second

order rate since both the interior differencing scheme

of the flow solver and the intergri(l l)oundal'y interpola-

tion scheme arc second or(ler. In order to correctly de-

termine the numerical error associated with the present

overset grid solutions, the exact Euler solution must be

available. Unfortunately, the exact solution is unknown.

Therefore, the singh, very fine grid solution shown in

Figure 2 is used in lieu of the exact solution. The single

very fine grid solution is refiu'red to hereafter as STA-

S-1 (Steady Transonic Airfi)il - Single grid - case 1).

The STA-S-1 solution was obtained using 643 l)oints ill

the azimuthal direction (.I), and 131 points in the sur-

face norlnal direction (K). Sin('e the flow soh'er used

here is fully 3D, the l)resent 2D l)roblem was sinmlated

using 3 planes of 643 x 131 points. This spacing is twice

that of the finest AGARD solution. In addition to STA-

S-1, four overset grid solutions of the same problem were

carried out using grids of varying resolution. The nam-

ing convention adopted for the overset grid solutions is

STA-M-X. The "M" stan(ls fi)r multiple grid case, and

"X" stands for the particular case number referenced in

Table 1. Table 1 gives statistics of the grid systems for

each case presented in tiffs section.

Tile overset grids are each composed of a body-fitted

grid for the airfoil, and a background Cartesian grid

of correspmlding resolution. The body-fitted grids are

each subsets of STA-S-1. For example, STA-M-1 is iden-

tical with STA-S-1 fi)r all points in J and all points in

K out to K = 61. STA-M-2 was obtained by using

every other point from STA-M-1 in both the J and K

directions. STA-M-3 was obtained by using every third

I)oint in J and K. STA-M-4 was obtained by using ev-

ery sixth I)oint ill J and K. Since all overset grids have

points ill common with STA-S-1, the point-wise numer-

ical error in each overset solution can be computed as

a simple (lifference with the STA-S-1 solution. Figure 3

shows a plot matrix of the error which resulted on each

overset grid solution. The top row shows solution error

in the coarse overset solution (STA-M-4) with respect

to the single very fine grid s()lution (STA-S-1). Moving

from t0p-to-bottonl , the error 1)h)ts correst)ond to in-

crea.singly fine overset grid solutions. The first column

of plots in Figure 3 is the h)cal error in mass density.

The second and third colmnns are the local error in

X-momentum and total energy, respectively. Figure 4

shows the rate at which the error (lccays as a function

of grid resolution. The error represented in Figure 4 is

the rms error of the error fichls shown in Figure 3. The

solid lines shown in Figure 4 represent first and second

order slopes (i.e., 2nd or(h'r iml)lies that doubling the

numl)er of grid 1)oints will redu('e the error by a factor

of 4).

The error reduction from the STA-M-4 to STA-M-3 so-

lutions is second order in all flow variables. This is also

true for the scalar varial)les (p and e) throughout the

range of grid refinement. However, the vector variables

(pU and pW') (lrop to a nearly first order slope between

the STA-M-3 and STA-M-2 solutions. The reason for

this is that tim refi,ren('e solution (STA-S-1) is not ex-

act. As the resolution of the overset grids approaches

that of the refl, rence STA-S-1 ('_Lse, the error computa-

tions I)ecome invalid.

Surface Cp plots are presented in Figures 5 and 6. Fig-

ure 5 provides a coml)arison wilh tile finest AGARD so-

lution and the present STA-S-1 and STA-M-1 solutions.

Clearly, the three solutions are ill very good agreement.

Figure 6 l)rovi(les a ('omparison with the finest AGARD

solution (again) and two relatiw'ly coarse-grid solutions,
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fully implicit, a temporal error will result. Full aircraft

applications can involve a_s iuany as 100 grid c(mapo-

nents, perhaps more. At what point does the temporal

error associated with exi)licit intcrgri(l boundary uI)-

dates become significant? The second concern relates

to numerical stability. As a (lomain is decomposed into

more and more grid conq)onents, the lagging of inter-

grid boundaries makes the overall solutio|L procedure

more explicit. Indeed, in the limit as the domain is de-

composed into as many grid components as there are

grid points, the scheme is reduced (in essence) to Point

Jacobi. At what point, then, does stability hccome a

real issue?

Unsteady Transonic Oscillating Airfoil Examples

In order to explore tile questions posed above, con-

sider the case of an oscillating airfi)il subject to tran-

sonic flow conditions. SI)ecifically, consider a NACA

64A010 airfoil subject to Mach 0.796 freestream condi-

tions and forced oscillation of constant amplitude. The

specific case to t)e considered here is defined in Ta-

ble 3, and results in an attached boundary layer al,d

weak moving upper and lower surface shocks. The mo-

tion of the shocks, and unsteady acrodynanfic loads arc

driven t)y the an|plitude and fl'equency of oscillation of

the airfoil. As with the steady-state cases considered

previously, the approach here is to determine numer-

ical error relative to a very fine benchmark solution.

The benchnlark solution is referred to as UTOA-S-1

(Unsteady Transonic Oscillating Airfoil - Single grid -

ease 1). Like the STA-S-1 case of the I>revious section,

the UTOA-S-1 grid has 643 l)oints ill the azimuthal di-

rection (J), and 131 l>oints in the surface normal direc-

tion (K) (sec Figure 10). Relative to a (limensionless

chord lengtl| of unity, tim initial sl)acing away fr<)nl the

wall is 1 × 10 -_.

In order to isolate the error and stability concerns at-

tributable to the exl)licit Ul)(lating of intcrgri(I bound-

ary points, the UTOA-S-1 grid was deeoml)osed in a

special way to fi)rm the I)asis for the five multii)le grid

COmlmtational cases indicated ill T;d)le 4 (note that the

"M" in Table 4 nomenclature indicates Multiple grid

case). For examl)lc, the UTOA-S-1 grid was decom-

posed into the two overlal)ping grids indicated in i_igure

10 (UTOA-M-1). Both grid ('Oml)oncnts in the UTOA-

M-1 grid arc exact subsets of the UTOA-S-1 grid. Inter-

grid boundary points ill the inner UTOA-M-1 grid are

coincident with interior points of the outer UTOA-M-1

grid. Likewise, intergrid boundary 1)oints on tile outer

UTOA-M-1 grid are coincident with interior l)oints of

tlle inner UTOA-M-1 grid. As a result, there is no

interl)olation error associated with intergrid boundary

condition ul)dates. Further, the llrocedure is sl)atially

conservative. The only 1)ossil)le source of error ill the

cmnlmtations, relatiw" to the UTOA-S-1 ben('hmark so-

lution, is the explicit nature of tile intergrid boundary

ui)dating procedure.

Adopting the same method of decomposition used to

realize the 2 component UTOA-M-1 grid system, the

UTOA-S-1 grid wa_s (lecomlmsed into grid systems with

16 and 32 comI)onents (see Figure 10). The 16 compo-

nent grid system corresl)onds to the UTOA-M-2 case

indicated in Table 4. The 32 component grid sys-

tem corresponds to the UTOA-M-3, UTOA-M-4, and

UTOA-M-5 cases indicated ill Table 4. Cases UTOA-

M-1 through UTOA-M-3 corresl)ond to simulations us-

ing the same time-step size as that employed in UTOA-

S-1, and allow the ten|lloral error resulting from explicit

intergrid ul)dating to be identified. Cases UTOA-M-3

through UTOA-M-5 corresl)ond to simulations carried

out on the 32 component grid system for time-step sizes

of At = 0.0025, 2 × At, and 4 × At, respectively. As a

result, ca_cs UTOA-M-3 through UTOA-M-5 may fur-

nish some insight into the iml)a('t on stal)ility of explicit

intergrid boundary ul)dates.

The l)hysical problem being solved in all the UTOA

cases indicated in Tal)le 4 has been studied experimen-

tally in the NASA Alnes 11 × 11 foot wind-tunnel[13].

An attempt to verify the wdi(lity of the benchmark case

!W con|parison with exl)eriment has been carried out.

However, due to circumstances outlined below, tile ex-

perimental data set eml)h)yed did not facilitate a con-

elusive solution validation ('mnl)arison. This not with-

standing, the UTOA cases do provide imt)ortant ref-

erence inforn|ation regar(ling the mmlerical questions

immediately at hand.

The benchmark UTOA-S-1 unsteady solution was ini-

tiated from a nearly converged static (non-oscillating)

solution at)out the airfoil at mean angle-of-attack (c_ m -

-0.21°). The surface C'v distribution resulting from a

fully converged static airfoil case is shown in Figure 11,

along with the exl)erinlental results. Thc agreement

i)etween the coml)utation and experiment is very good.

However, there is a slight (lis('rel)ancy in Cp magnitude

over the first 40¢X ('hoM of the foil. The reason for this is

that the foil geometry use([ iu the computation is based

on the OSU definition of a NACA 64A010114], rather

than the coordinates l)ublished ill reference[13]. Figure

12 illustrates the differel|ces ill tl,e theoretical, experi-

mental, and OSU definitions of the NACA 64A010 ge-

ometry. The definition used in the computations (OSU)

corresponds to the theoretical definition up to about

50(_ chord and then smoothly transitions to the exper-

imental definition. Figure 11 also contains a fldl poten-

tial solution to this 1Lroblem I)ased on the theoretical

NACA 64A010 definition. The f, ll potential sohttion

was l)rovided for COml)arative l)urposes only. The com-

fluted integral loads (Ct and C,,, ) are in good agreement

with the corresl)on(ling experimental results (see tabu-
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crepancies between experiment and computed solutions

obtained using an overset grid apl)roach. The present

results suggest that grid resolution is the primary issue.

If it is not possible to provide sufficient grid resolution

for a given problem, a conservative interface scheme is

preferable, but accuracy will be compromised whether,

or not, conservation has been maintained across grid

interfaces. The present study suggests the use of over-

set fine grids a.s a practical means of insuring smooth

representation of flow gra(lients in overset grid systems,

and hence, maximizing solution accuracy.

The steady state STA-M grid refinelnent study ('arried

out here indicates that fi)rmal solution accuracy is main-

tained in an overset grid system using tri-linear inter-

polation to SUl)l)ly intcrgrid boun(lary conditions. The

results confirm that spatial error a.ssociate(l with inter-

polation of intcrgrid I)oundary data can I)e minimized

via overset fine grid conq)onents. This appears to be

true even if grid interfaces exist across shocks.

Explicit updating of intergrid boun(lary conditions did

not have a significant adverse affect on solution accu-

racy for the present UTOA cases, fi)r which the solu-

tion (h)main was split into as many as 32 overlapi)ing

grid COml)onents. Solution error attributable to explicit

Ul)(tating of intergrid I)oundaries was observed to be

I)rOl)ortional to the time-ste l) size eml)loye(l , however

remained insignificant for all stable At. The present

UTOA-M cases inherited no discernible stability penal-

ties as a result of tile exl)licit intergrid boundary Ul)-

dates. These results suggest that unstea(ly problems of

l)ractical iml)ortance (3D complex geolnetry) can be ac-

curately simulate(I using an overset grid al)proach pro-

vided that the tinw-step size is sufficient to resolve the

significant temporal gradients inherent to the i)roblem.

ACKNOWLEDGEMENTS:

This work was carried out under NASA ARC grant

NCC2-747. All computational results reported herein

were carried out on the NAS facility at NASA ARC.

The author wishes to acknowledge the influence of the

late Profi_ssor Joseph Steger on this work, _s well a.s the

author's present course of research. In ad(lition, thanks

are due to Drs. Kall)ana Chawla and Christol)her At-

wood who have I)een very encouraging and have always

been available for discussions on the issues presented

herein. The sui)I)ort and direction 1)rovidcd by Dr. Jim

McCroskey is also gratefillly acknowledged.

REFERENCES

[1] Steger, J. L., Dougherty, F. C., and Benek, J. A., "A

Chimera Grid Scheme," A(lwmces in Grid Generation,

K. N. Ghia and U. Ghia, eds., ASME FED-Vol 5., June

1983.

[2] Martin, F. and Slotnick, J., "Flow Computations

for the Space Shuttle in Ascent Mode Using Thin-Layer

Navier-Stokes Equations," Progress in Astronautics

and Aeronautics, Vol. 125: Applied Computational

Aerodynamics, P. Henne, E(I., AIAA, 1990.

[3] Meakin, R., "Computations of the Unsteady Flow

About a Generic Wing/Pylon/Finned-Store Configura-

tion," AIAA Paper 92-4568-CP, l)t ). 564-580, August

1992.

[4] Lijewski, L. and Suhs, N., "Chimera-Eagle Store

Sel)aration," AIAA Paper 92-4569, August, 1992.

[5] Jordan, J., "Computational Investigation of Pre-

dicted Store Loads in Mutual Interference Flow Fiehls,"

AIAA Paper 92-4570-CP, pl ). 581-591, August, 1992.

[6] Benek, J., Donegan, T., and Suhs, N., "Extended

Chimera Grid Embedding S('heme with Application to

Viscous Flows," AIAA Pal)er 87-1126-CP, pp. 283-291,

1987.

[7] Renze, K., Buning, P., and Rajagoplan, R., "A

Comparative Study of Turl)ulencc Models for Overset

Grids," AIAA Paper 92-0437, January, 1992.

[8] Meakin, R., "A New Method For Estat)lishing

Inter-Grid Communication Among Systems of Overset

Grids," AIAA Paper 91-1586-CP, pp. 662-671, June,
1991.

[9] Dietz, W., Jacoeks, J., and Fox, J., "At)plication

of Domain Decomposition to tile Analysis of Complex

Aerodynamic Configurations," SIAM Conf. Domain

Decomposition Meths., Houston, TX, March 1989.

[10] Brown, D., Chesshire, G., Henshaw, W., and

Krciss, O., "On Coml)osite Overlal)l)iug Grids," 7th

Internat. Conf. on Finite Element Methods in Flow

Prol)lcms, Huntsville, AL, April 1989.

[11] Moon, Y. and Liou, M., "Conservative Treatlnent

of Boundary Interfaces for Overlaid Grids and Multi-

level Grid Adaptions," AIAA Paper 89-1980-CP, Pt).

480-494, 1989.

[12] Viviand, H., "Numerical Solutions of Two- Dimen-

sional Reference Test Ca.ses," AGARD-AR-21h Test

Cases fi)r Inviscid Flow Fiehl Methods.

[13] Davis, S. and Malcolm, G., "Exl)erinlental Un-

steady Aerodynamics of Conventional and SuI)ercritical

Airfoils," NASA TM-81221, August, 1980.

[14] Olsen, J., "AGARD Standard Configurations for

Aeroelastic Apl)lications of Transonic Unsteady Aero-

dynanfics," AFFDL-TM-78-6-FBR, Part III (Adden-

dum), October, 1978.

864



10 -1

rms Error vs. N

10 -2

l0 -3 × ep

• epu

• epw

+ ee

10 i

N

x
+

+
• ×

• x

t

| w | | ii | | [

10 2

((JM × KM) 1/2 )

Figure 4. Grid refinement and rms error reduction for STA cases.

1.5

1.0

0.5

0

-0.fi

-1.0

-- AGARD
..... STA-S-1
.......... STA-M-1

0.2 0:4..... o:6..... o18 ...... i.o
X/C

Figure 5. Cp vs. X/C plots for the finest AGARD

solution [12], and the present STA-S-1 and STA-M-1
solutions.

1.5

1.0

0.5

_ o

-0.5

-1.0

-- AGARD
..... STA-S-2
.......... STA-M-3

, ..... , ....... , ......... , ...... , .......
0 0,2 0.4 0.6 0.8

XJC

1.0

Figure 6. Co vs. X/C plots for the finest AGARD

solution [12], and the present coarse STA-S-2 and
STA-M-3 solutions.

866



UTOA-S- 1 643xl 31

UTOA-M- 1
2

UTOA-M-2

/ / 14_ i_ 15

Figure 10. Decomposition of the UTOA-S-I grid into 2,

16, and 32 overlapping grid components. Intergrid

boundary conditions are spatially conservative and have

no interpolation error.

UTOA-M-3 (4 and 5)

_" "-, 24 ",.23 I:: 22. I 2/ [ 2(1 1/19 /'8""

1.0

0.8

STATIC foil at otm

0.6

0.4

Cp

0.2

-0.2

-0.4

-0.6

• Upper Surf (Exp)
• Lower Surf (Exp)

O.rSurfl To : :tIc,=.o.o3,,Cm=+ooo14-- Lower Surf
..... Full Potential

X/C

-- Figure 11. Cp vs X/C comparison between NASA

Experiment [13], the present UTOA-S-I solution,

and, for reference, a Full Potential solution

(Moo = 0.796, otm = -0.21 °, Re = 1.256 × 107).

868

0.06

0.05

0.04

Z/C

0.03

0.02

0.01

_t

• Theory • '_'_

UTOA-S-1 (OSU [_l_

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X/C

Figure 12. NACA 64A010 airfoil definitions.

a) Theoretical coordinates presented in [13],

b) coordinates of experimental con figuration

[13], and c) coordinates used in UTOA

computations (based on OSU definition[14]).



Table 1. Grid Refinement Cases

Case I Grids 2 Type JM x KM

AGARD 1 O 320 x 64

STA-S-I 1 O 643 x 131

STA-S-2 1 O 215 x 44

STA-M-I 2 O 643 x 61

BC 309 x 195

STA-M-2 2 O 322 x 31

BC 155 x 97

STA-M-3 2 O 215 x 21

BC 103 x 65

STA-M-4 2 O 108 x ii

BC 51 x 33

STA-AG 7 O 215 x 21

BC 103 x 65

FBF 25 x 21

FBF 31 x 21

FBF 37 x 17

FBF 39 x 21

FC 22 x 25

1 Outer boundary is 25 chords

in all cases.

2 Type legend:

O = "O" topology

BC = Background Cartesian

FBF = Fine Body-Fitted

FC = Fine Cartesian

Table 3. Unsteady Transonic Oscillating Airfoil

(UTOA) Test Conditions

ID 55

Foil

M 0.796

R e 12.56 x 106

S o COS(_t)

(Zm

(]to

I(

f

Xo/C

1

c_

o
-0.21

i. 01 °

0.202

34.4

0.248

0.500

336

NASA TM-81221" Case ID

NACA 64A010

Free Stream Mach

Reynolds Number

Oscillatory angle of

incidence

Mean angle-of-attack

Oscillatory pitch amplitude

Reduced frequency

= _I/2U

= 2Kf

Frequency (Hz)

Pitch axis w/r leading edge

Chord length (m)

Sonic speed (m/s)

* See reference [13]

Table 2. Computed Loads

Case C:> CI, C M

AGARD 0.0230 0.3632 -0.0397

scatter* ±0.0023 ±0.0273 ±0.0072

STA-S-I 0.0145 0.3403 -0.0359

STA-M-I 0.0155 0.3569 -0.0394

STA-M-2 0.0148 0.3372 -0.0357

STA-M-3 0.0152 0.3463 -0.0361

STA-M-4 0.0195 0.3085 -0.0319

STA-AG 0.0162 0.3487 -0.0358

* Scatter given in AGARD report[12]

is based on 9 Euler solutions to

the present flow conditions from

varying solvers, grid densities,

and grid type.

Table 4. UTOA Test Cases

Case Grids At

UTOA- S - 1

UTOA-M- 1

UTOA-M-2

UTOA-M- 3

UTOA -M- 4

UTOA-M- 5

1 0 0025

2 0 0025

16 0 0025

32 0 0025

32 0 0050

32 0 0100

Case UTOA-S-I is the

benchmark case.

Cases UTOA-M-I through

UTOA-M-5 are multiple

grids cases which have

zero interpolation error,

and are fully conserva-

tive.
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